Normal subgroups in limit groups of prime index
نویسندگان
چکیده
منابع مشابه
Classifying fuzzy normal subgroups of finite groups
In this paper a first step in classifying the fuzzy normalsubgroups of a finite group is made. Explicit formulas for thenumber of distinct fuzzy normal subgroups are obtained in theparticular cases of symmetric groups and dihedral groups.
متن کاملFinite groups with $X$-quasipermutable subgroups of prime power order
Let $H$, $L$ and $X$ be subgroups of a finite group$G$. Then $H$ is said to be $X$-permutable with $L$ if for some$xin X$ we have $AL^{x}=L^{x}A$. We say that $H$ is emph{$X$-quasipermutable } (emph{$X_{S}$-quasipermutable}, respectively) in $G$ provided $G$ has a subgroup$B$ such that $G=N_{G}(H)B$ and $H$ $X$-permutes with $B$ and with all subgroups (with all Sylowsubgroups, respectively) $...
متن کاملNilpotent groups with three conjugacy classes of non-normal subgroups
Let $G$ be a finite group and $nu(G)$ denote the number of conjugacy classes of non-normal subgroups of $G$. In this paper, all nilpotent groups $G$ with $nu(G)=3$ are classified.
متن کاملOn subgroups of prime power index
We determine all nite groups G which admit a subgroup K of index p a ; p a prime, under the assumption that G has an irreducible and faithful GF (p)-module of dimension at most a. As an application to the theory of permutation groups we determine the maximal transitive subgroups of the primitive aane permutation groups.
متن کاملOn the Invariant Subgroups of Prime Index*
The totality formed by all the operators of any group (G) which are common to all the invariant subgroups of prime index (p) constitutes a characteristic subgroup, and the corresponding quotient group is the abelian group of order pK and of type (1, 1, 1, ■■■)-\ The number of the invariant subgroups of index p is therefore pK — 1/p — 1. The given totality includes all the operators of G which a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Group Theory
سال: 2018
ISSN: 1433-5883,1435-4446
DOI: 10.1515/jgth-2017-0030